skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Givans, Jahmour J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The sum of neutrino masses can be measured cosmologically, as the sub-eV particles behave as “hot” dark matter whose main effect is to suppress the clustering of matter compared to a universe with the same amount of purely cold dark matter. Current astronomical data provide an upper limit on m ν between 0.07–0.12 eV at 95% confidence, depending on the choice of data. This bound assumes that the cosmological model is Λ Cold Dark Matter ( Λ CDM ), where dark energy is a cosmological constant, the spatial geometry is flat, and the primordial fluctuations follow a pure power law. Here, we update studies on how the mass limit degrades if we relax these assumptions. To existing data from the satellite we add new gravitational lensing data from the Atacama Cosmology Telescope, the new Type Ia supernova sample from the Pantheon + survey , and baryonic acoustic oscillation (BAO) measurements from the Sloan Digital Sky Survey and the Dark Energy Spectroscopic Instrument. Using our fiducial data combination, described in the appendix, we find the neutrino mass limit is stable to most model extensions, with such extensions degrading the limit by less than 10%. We find a broadest bound of m ν < 0.19 eV at 95% confidence for a model with dynamical dark energy, although this scenario is not statistically preferred over the simpler Λ CDM model. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  2. Evans, Christopher J.; Bryant, Julia J.; Motohara, Kentaro (Ed.)
    PFS (Prime Focus Spectrograph), a next generation facility instrument on the Subaru telescope, is now being tested on the telescope. The instrument is equipped with very wide (1.3 degrees in diameter) field of view on the Subaru's prime focus, high multiplexity by 2394 reconfigurable fibers, and wide waveband spectrograph that covers from 380nm to 1260nm simultaneously in one exposure. Currently engineering observations are ongoing with Prime Focus Instrument (PFI), Metrology Camera System (MCS), the first spectrpgraph module (SM1) with visible cameras and the first fiber cable providing optical link between PFI and SM1. Among the rest of the hardware, the second fiber cable has been already installed on the telescope and in the dome building since April 2022, and the two others were also delivered in June 2022. The integration and test of next SMs including near-infrared cameras are ongoing for timely deliveries. The progress in the software development is also worth noting. The instrument control software delivered with the subsystems is being well integrated with its system-level layer, the telescope system, observation planning software and associated databases. The data reduction pipelines are also rapidly progressing especially since sky spectra started being taken in early 2021 using Subaru Nigh Sky Spectrograph (SuNSS), and more recently using PFI during the engineering observations. In parallel to these instrumentation activities, the PFS science team in the collaboration is timely formulating a plan of large-sky survey observation to be proposed and conducted as a Subaru Strategic Program (SSP) from 2024. In this article, we report these recent progresses, ongoing developments and future perspectives of the PFS instrumentation. 
    more » « less